Blackburn Architects barn design

Email Subscription

10.19.18

Fencing When Designing a Horse Farm: Options to Consider

Sagamore_insta

Fences are one of the most common discussion points among the Blackburn team and clients when we’re designing an equestrian facility. The options listed below are certainly not exhaustive but reflect what we commonly find in many of our projects.

Some options are better suited for pastures, while others are more appropriate for small stall turnouts. We’ve tried to identify a variety of approaches that meet the safety needs for horses, limit maintenance needs, and often fall within neighborhood guidelines. 

1. Steel rail fencing is an option for stable turnouts. The material is available in a thinner profile so it isn’t as visually heavy and it can be painted black or another dark color so that it does not have the “ranch” appearance seen with galvanized steel pipe corrals. The up-front cost is higher but the material is durable and will have little-to-no maintenance needs.

2. Woodguard polymer coated wood fencing is treated wood with a non-toxic, non-chipping surface covering. The wood grain is still visible but the finish has some of the plastic texture of the polymer. This product allows for fencing to be constructed similar to a wood fence, with the rails attached to the face of the posts. The result is a stronger, safer fence. Woodguard has a 20-year warranty. The cost is similar to wood board fencing but the maintenance needs are less. While the manufacturers state that this product is resistant to cribbing, we would recommend that a hot-wire be provided at the top rail to discourage the horses from chewing. This material would be acceptable to use for both stall turnouts and paddocks. It offers the appearance of a traditional 3- or 4-board wood fence without the significant maintenance demands. https://www.wood-guard.com/horse-fencing/

3. High Tensile Polymer (HTP) comes in both rail and wire styles and is typically mounted on wood posts. The rail is typically 5” wide and from a distance will appear similar to wood board fencing. Because wire fencing has a lower visibility, we suggest using a thicker top board so that the horses can more easily identify the barrier. The HTP materials’ inherent flexibility makes these products durable and resistant to horses leaning on or running into the fence. Typically, these are more suited to large pastures or for perimeter fencing and less so for stall turnouts. The darker colors tend to exhibit a chalky appearance over time.

4. Rubber fencing is a durable, flexible, and low profile fencing material and is similar to the HTP fencing. We’ve not seen this product used as often and we understand that there’s a risk that the strings of the fabric (which is an internal support for the rubber) can become exposed and offer a hazard for horses to chew on. A hot-wire at the top of the fence may combat this risk.

The advantages of rubber, HTP or any type strap fencing is the posts can be set further apart which is useful when its highly visible and you want to minimize the number of posts. The fencing is flexible and resists breaking when a limb or tree falls on it therefore it’s a good material for perimeter fencing large acreage and where it encounters wooded areas. This is safer if/when a horse runs into the fence; especially a problem on larger paddocks when horses can get some speed and not be able to slow down.

5. HDPE is a post and board fencing material. It’s stronger than PVC and performs better in all weather conditions, but the primary issue is in the assembly of the fence. The rails are set between posts, instead of fastened to the face, and can pop out if the fence is not secured properly. Its requires more frequent posts which tends to look busy and it’s difficult to bend or angle corners because of the assembly method. The Blackburn team isn’t particularly fond of this material because it can look clunky and isn’t the safest option. http://www.amberwayequine.com/products/hdpe-fencing-2/

Posted in Equestrian News | | Leave a comment >
10.17.18

Recommendations for Adding Glass in a Horse Barn

WinterFarm_Insta

What’s the safest way to incorporate glass in a horse barn? If you’ve been following our work, you already know that Blackburn Architects’ mission is to promote as much natural light and ventilation in horse structures as possible. Naturally, this means we add a lot of windows to our designs. In its safety recommendations for the stable, Rutgers NJ Agricultural Experiment Station cautions that “windows need to be inaccessible to horses and livestock, covered with bars or screening and made of safety glass.” (https://esc.rutgers.edu/fact_sheet/safety-recommendations-for-the-stable-barn-yard-and-horselivestock-structures/). So how do our architects protect the horses and still use a lot of glass in our designs?

1. Use Tempered & Laminated Glass
We recommend that all glass in a horse stable be tempered, including glass that’s laminated. Tempering and lamination do two separate but similar things to increase the safety of glass if/when it breaks: Tempering makes the glass break into small chunks as opposed to slivers and shards, while the lamination gives the glass a slightly greater resistance to breaking and keeps the glass in place when and if it breaks.

Laminated glass consists of a clear plastic laminate sandwiched by glass on both sides. Since horses have access to both sides of a glazing unit, ideally both sides should be laminated and tempered. If this approach is too costly for your budget, stick with everything being tempered and omit the lamination. Laminated glass does not always age as well as tempering. The laminate can shrink and pull in from the corners of the glass, and eventually become visible over time. We prefer tempering.

2. Minimum Thickness of Glass and Airspace
To arrive at the minimum thickness of glass, work backwards from the depth of the frame, minus about 1/4”. Each glass manufacturer determines what spacer sizes they offer. Understand that the more airspace you can allow the better, but each manufacturer works with a few different pre-set size spacers. Use the largest one that still allows the glazing unit to fit within the frame.

3. Special Considerations for Cold Climates
In cold climates, we specify glass with a high solar gain and low emissivity. In technical terms, the glass meets the following guidelines:
1. A Solar Heat Gain Coefficient (SHGC) around 0.55
2. A U-value of less than 0.33
3. A higher value Visible Transmission (VT)
4. Use double-paned glazing units with low-e gas that has a vacuum sealed gasket between the panes of glass. The pocket between panes of glass is filled with an insulation gas, most typically argon.
5. Consider using low emissive (low-e) glass panes (low-e prevents the transfer of heat from warm to cold). The low-e coating (typically a metallic oxide) should be on outside of the innermost pane of glass.

There are pros and cons that should be considered with each option 1-5 above. For instance, with #4, over time and if the gasket seal fails, you can begin to see condensation between the panes of glass. Whereas with #5, you may be able to see the coating from certain angles, especially if you are wearing polarized sunglasses. Since the advantages are a bit more obvious, and similar to one another (i.e. tempered vs laminated, and low-e gas vs low-e coated glass), here is a summary of some of the disadvantages to each option:

Tempered only – glass may still shatter (in harmless pieces) and fall to the ground.
Laminated only – laminate can discolor over time and shrink in from the corners of the glass.

Low-e gas filled glazing unit – if the gasket fails, condensation can form in between the glass.
Low-e coated glass – may be visible in certain light conditions, or when wearing polarized sunglasses. You can sometimes see this on automobile glass.

To summarize, a good starting place for adding glass to your barn begins with tempered glass, meeting the SHGC and U-values recommended above. A step beyond this is low-e coated glass, since with #4 (low-e gas) you can expect the gaskets to fail at some point, and the glazing unit will need to be replaced. If the coating of the low-e coated glass is too “visible,” then low-e gas may be the better option, with the expectation that you may need to replace some of them again in 10 to 20 years, if and when the gaskets fail.

Posted in Equestrian News, News and Press | | Leave a comment >
02.05.18

Celebrate a New Barn in 2020

beechwood aisle_small
Been thinking about a custom barn, or buying property with existing structures that need an extensive overhaul?

I thought I’d take a minute and explain Blackburn Architects’ process for designing a new equestrian facility and overseeing its construction. While not carved in stone, for planning purposes, can easily become a two-year process.

The first step is usually a visit by me or another Blackburn architect. The initial meeting is our first chance to meet, walk the site, look at any existing buildings and discuss the project goals. I’m a firm believer in “a picture is worth a thousand words” but “being there is worth a thousand pictures” Following this, we’ll send a proposal for service, which outlines the process and fees.
Once a contract signed, we get to work immediately.

The timeline usually looks something like this:
• 6 to 10 weeks for Feasibility Study, Site Assessment and Master Plan
• 1 to 2 months for Schematic Design
• 2 to 4 months for Design Development and Construction Drawings
• 1 to 2 months for Permitting
• 12 to 16 months for Construction

At Blackburn Architects, equestrian design starts with the horse and ends with a building that fits the horse, the owner, and the surrounding environment like a glove. It’s as simple and beautiful as that.

Let’s explain the steps in greater detail:

Feasibility Study / Site Assessment / Master Plan
The goal of the Feasibility Study is to determine, as early in the process as possible, whether the intended project fits the owner’s program, the site, and the budget.

We assess any existing building(s) and the site. We take measurements to determine if an in-place structure will work for the goals of the project. We study the land until we come to a clear understanding of wind and solar direction, soils, changes in elevation – all natural and architectural characteristics that guide placement and design of any new buildings. Central to the success of the project, this “Master Plan” addresses all these things and more, providing a road map for the success of all future phases of our work.

The site analysis also includes a review of applicable zoning and easements for the property; we determine what (if any) limitations or restrictions may apply at the property. Land disturbance allowances? Height restrictions? Set-backs?

In tandem with the site evaluation (as soon as we have a contract), we send the client a unique Blackburn Architects questionnaire that we’ve developed over the years. Answers are collected and inform the design; starting off the process with clear direction from the client. It is extensive and though it covers about 25 pages, once it is completed it “paints” a picture of exactly how you would like your farm to operate. The efficiency of the operation is critical and can have a huge impact on your operating cost and maintenance budget.

Schematic Design
Moving seamlessly from the master planning phase (often there is a fuzzy line here where one ends and another starts), we start schematic design. In this step, we help our clients visualize the project design with a variety of techniques using both computer and hand renderings to illustrate the scale and the relationship of the project elements. Ideas, concepts, goals take form at this stage.

Budget Development
Once we’ve worked up outline specifications for the work, we can begin to get a rough idea of the costs. At this point we will either develop a rough estimate based on our 35 years experience with over 300 farm projects, consult with a professional cost estimator or a builder who is familiar with the building type in your location.

Design Development and Construction Documents
Once we have the site layout, design, and budget, drawings and other documents give serious form to interior and exterior finishes, and firmly establish the size, character, and details of the project. These documents will be used by our professional consultants to design the electrical, gas, and other utilities. When these systems are defined, and we have a basic finish schedule and budget, we’re ready to file for the permit and start construct of the building.

Bidding and Construction Administration
With the construction documents complete, we can help clients select a contracting company through a “bidding” process for the work, or we can work with a client’s pre-selected Construction Manager. We work side-by-side with our clients to ensure that the best and most informed decisions are made during this process.

While in my experience this process typically lasts about 18 to 24 months, a lot of this depends on factors that are outside of either our control or our clients. The time of year and weather, for instance, can greatly influence how fast construction progresses, especially in colder climates. Pastures have a growing season, and they need at least a year (maybe two) to establish.

Designing and constructing a custom facility is a very subjective process, which is guided by all kinds of factors including the complexity and size of the structures, the time of year, the strictness of zoning regulations and neighborhood associations, state environmental regulations, and so on. But rather than let these things hold you back, I say, “Jump In” or give us a call to discuss how the process can work for you. When you slide open the doors to your dream facility and see the happy heads of your horses looking over the stall doors, all the time and effort will vanish. At least that’s been my privileged experience over all these years.

Posted in Equestrian News, News and Press | | Leave a comment >
10.30.17

Blackburn Barn Topics: Stall Flooring

Stall Flooring

In this on-going series, John Blackburn offers insight into component parts of equestrian facilities. With more than 35 years’ experience in the design of horse barns, he’s seen his share of good, bad and worse. In this installment, he gives advice on stall flooring. Still as applicable as ever, we’re reposting Sushil Dulai Wenholz’ article from The Horse, Sept 1, 2001 (added a few updates, too).

Stall Flooring
By Sushil Dulai Wenholz

You give a lot of thought to your horse’s health and happiness. You groom him until he gleams, swaddle him in boots and blankets, carefully monitor his diet, and expend considerable effort and expense making sure he’s comfortably bedded. But have you thought about what lies beneath that soft bed? In essence, the stall floor is the box spring beneath your horse’s mattress, and it’s every bit as important as what goes on top–perhaps more so.

No matter how nice the bedding, a poorly constructed floor can lead to respiratory troubles from ammonia gases, thrush from trapped moisture, achy joints from uneven or too-hard surfaces, and injury from slippery or abrasive materials. In addition, a poor floor can mean wasted bedding and extra labor for you.

A good stall floor starts with a good construction plan. John Blackburn, senior principal of Blackburn Architects, a 34-year-old firm that has designed more than 400+ barns in 35 states; and Peter Gibbs, Extension Horse Specialist at Texas A&M University, outline the steps involved in building a floor that will keep you and your horse happy, whether you’re revamping an existing stall or building a brand new barn from scratch.

Starting From Scratch

1. Pick the location. If you’re building a barn, you have the luxury of choosing the best site. Look for an area that’s dry or at least easy to drain. Avoid steep slopes, areas that are consistently wet, and locations that are subject to water runoff during heavy rains or snow melt. In terms of soil, you’re basically stuck with whatever is normal for your region. But if you have it, soil that packs tightly is ideal, says Blackburn, because it will provide a tough surface that isn’t too hard or abrasive.

2. Dig to the base. Whether you’re starting from scratch or redoing an existing stall, you need to dig down to a well-draining layer of soil. This will give urine and other moisture a path to drain away from your horse. Expect to excavate at least one foot deep over the entire stall, says Blackburn. You might have to go deeper, depending on local soil conditions.

3. Level the ground. You should level out that base layer to help make sure the surfaces above it are level. A nice, even plane puts less stress on your horse’s legs than an uneven floor.

4. Compact the base and fill. Even if the floor starts out flat, Gibbs explains that extended use can create a holey or uneven surface, especially with dirt or stone-dust flooring. To form a firm foundation that can withstand daily wear and tear for extended periods, compact the floor. You can use a hand roller, a motorized, hand-held compactor or “settler,” or some other heavy pounding tool to do the job.

First, compact the layer you’ve uncovered and leveled. Then begin adding layers of dirt or stone dust. “The important thing is to install the flooring in layers and tamp it at each layer,” says Blackburn. He recommends using three-inch layers for dirt or one- to two-inch layers for stone dust. Compact each layer “until you think it can take the abuse of hooves kicking at it,” he adds, noting that there isn’t a standard measure to go by.

To ensure good drainage away from the building, add layers until your floor’s surface is 12 to 18 inches above the natural grade around the barn, says Blackburn. “You want to get the moisture to drain through the flooring and away from the stall and barn,” he explains. In addition, this protects the floor from high water levels outside that might otherwise easily flood the stall.

Now you’re ready to add the floor itself. Next you’ll find basic installation information for several common types of flooring.

Adding the Flooring

Dirt–If you plan to have a dirt floor, and local soil drains exceptionally well, you’re done. Most soils, however, drain moderately well at best, so you’ll probably want to help it along. One option is to grade the top layer of dirt slightly (no more than three degrees), so that moisture runs off to exit the barn or stall through an outlet in the corner (or through the stall door to the aisle).

You could also make a “leach hole,” or simple drain, inside the stall. To do this, dig a hole about three feet in diameter and deep enough to reach that bottom, well-draining layer of soil at the base you created. Then fill the hole with varying sizes of rock (or alternating layers of sand and gravel), starting with large gravel chunks at the bottom and working toward stone dust at the top. Tamp into place and cover with dirt to even out the floor.

Stone Dust–Blackburn believes that stone dust (also known as crusher run, screenings, or quarter-inch minus) makes a better floor than dirt, “because it can compact well and still permits drainage.” However, he does recommend adding a subsurface drainage system to enhance flow-through. To do this, lay filter fabric over the floor, top it with a layer of crushed gravel, then add three to five inches of stone dust. As you did with the base, compact the stone dust after each one- to two-inch layer. When you’re done, water the floor, tamp it down tight again, and let it settle overnight. Fill in any holes or depressions the next day.

Another idea is to install a drainpipe under the stone dust floor. “I feel that this helps drain the moisture away from the stall area and allows you to flush the stall with moisture to cleanse the flooring,” explains Blackburn. “Otherwise, it could drain into the dirt and stone and stay there, providing odor and a breeding ground for bacteria.”

To lay pipe, first dig a swale–a sloped ditch about one foot deep. Lay perforated pipe into the swale (you want a piece long enough to provide drainage away from the building, notes Blackburn). Cover the pipe with filter fabric, then fill the swale with crushed gravel. Now add and compact your stone dust as stated previously.

Plastic Grid–Plastic grid flooring comes in many variations, but the basic idea is the same for all floors: To provide a 100% permeable floor plus a level, stable, durable surface. Installation instructions vary by manufacturer; however, most recommend laying the grid over a well-draining subsurface (such as stone dust) so that moisture not absorbed by bedding will drain away. Usually, the holes in the grid (which create the excellent drainage) are filled with stone dust.

Rubber Mats–As with grid systems, rubber mats (and similarly, rubber pavers, which look like rubber bricks) vary in design, thickness, texture, etc., from one manufacturer to the next. Likewise for installation instructions, although most want you to measure stalls so that mats fit snugly against each other and the walls. Unlike grids, however, mats and pavers are meant to trap moisture above the surface, where it can be absorbed by bedding. Moisture can seep through the seams (or possibly the rubber itself). So, flooring experts recommend that you lay mats over a well-draining subsurface, such as one of the crushed stone systems mentioned earlier, or over relatively nonporous materials such as concrete and asphalt that can be easily disinfected.

Asphalt–You can lay an asphalt floor yourself, if you’re willing to find a supplier, rent equipment, and learn the proper way to apply, rake, and settle it. However, it can be a tricky process. As Blackburn notes, “The right mix of asphalt is important. It should be raked as it’s installed, then hand rolled. I would imagine that hiring a professional would be advisable.”

He also suggests that you grade asphalt floors with a crown of one-eighth inch per foot in order to sustain drainage. “With a flat surface, the urine puddles and leaves the horse standing in dampness, potentially causing all kinds of hoof issues,” he explains. The slope will also facilitate drainage when the stall is washed or disinfected. Blackburn recommends the use of aggregate, or “popcorn,” asphalt, which offers a non-slip texture. And he strongly urges the use of rubber mats or rubber pavers to cushion this relatively rough surface.

Concrete–Many people are comfortable mixing and pouring their own concrete–an easier process than laying asphalt. For larger projects, you might want to hire outside assistance. Although moisture can seep through concrete over time, this footing is not as porous as stone dust. So, Blackburn recommends grading it at a rate of one-eight inch to one-quarter inch per foot to allow for drainage. Concrete should be cushioned with rubber mats or pavers, he adds, to reduce the risk of injury and musculoskeletal stresses that this hard flooring could cause.

A Note on Cost

Before you begin stall floor construction, you should create a budget for the project. However, as Blackburn notes, “The cost of different options can vary dramatically based on the number of stalls, location, and the material used,” as well as the specific suppliers, consultants, and equipment rental agencies with which you might deal.

For instance, says Blackburn, “I have found that the cost of asphalt flooring can range widely from area to area. And some suppliers require that a large quantity be ordered of the type and mix you need before they will supply it at a reasonable price.” Therefore, it could actually be more expensive, per stall, to floor a smaller barn than a larger barn. It’s important to contact local companies for estimates before you start the job. (For mass-manufactured, nationally distributed products like most rubber mats and plastic grid systems, you can check pricing with the manufacturers, many of whom have web sites.)

As you start compiling price quotes and creating a budget, Blackburn cautions that you consider not just the initial expense of purchase and installation, but also long-term costs. A dirt floor might be virtually free to install except for labor, but could be expensive in terms of labor over the long run. Rubber mats might be pricey at the start, but could pay for themselves through longevity, ease of care, and reduced bedding.

Also consider the stall flooring material can greatly impact the amount of bedding you’ll need to use. For instance, a stall floor with interlocking rubber brick can cut your bedding in half which can save on barn operations, offsetting increased installation costs.

Additional options for flooring include adhered cushioned or foam filled. To conclude, all stall flooring has an impact on the comfort of your horse, the material cost of installation, bedding requirements and your ability to clean and sanitize the stalls.

ABOUT THE AUTHOR
Sushil Dulai Wenholz
Sushil Dulai Wenholz is a free-lance writer based in Lakewood, Colo. Her work appears in a number of leading equine publications, and she has earned awards from the American Horse Publications and the Western Fairs Association.

Posted in Equestrian News, News and Press | | Leave a comment >