equestrian architecture

Email Subscription

03.03.21

Barn Series #1: Thoughtful Lessons on Converting Barns into New Uses

Blackburn Architects has been renovating old barns for nearly 40 years. That means that many photos of our projects circulate on social media, Pinterest, Houzz and other sites. Questions are a natural outcome. So, what are some of our recommendations for creating a home out of an old barn? We thought we’d ask John Blackburn for his thoughts.

John, what kind of barns work or don’t work for renovation into a home, generally?

“There is no one kind or type barn that works best, though many people gravitate towards old 19th century timber-framed bank barns. But there are many types of other old barns and they can make for wonderful houses – grand interior spaces with a lot of historic character. So, the type of barn really depends on your aesthetic and functional needs as well as the location.

“Barn architecture was influenced by the history and culture of the people that settled a particular area. For example: 1. Dutch and German barns in the mid-Atlantic region, 2. Connected barns in New England, 3. Tobacco barns in the south, or 4. Dairy barns which can be found in almost any region of the US. The ethnicity of the settlers, geographic location, the type crops or animals raised or used in farming.  All of these influenced the look, style and type barns that were constructed in an area.  And, of course, available building materials (i.e. stone, heavy timber, etc.) had a huge impact.

“Another little known fact that influenced the type and style of American barns was the circulation of the Old Farmer’s Almanac and other early farm periodicals.  These publications frequently included articles about different barn styles.

John, what to look for in barns to restore?

“There are a lot of factors to consider but the condition of the barn and the location are critical.

“The structural condition is one of the most important factors when considering transforming an old barn into a new use.  I recommend a structural inspection of the entire building before engaging in any remodeling or adaptation.  The structural damage could be obvious, i.e. missing, broken or rotted timbers, collapsing foundations or roofs, suitability of the structure to the load conditions of the new use, etc. Plumbness of the structure can give an indication of the structural soundness of the barn.  Obviously a leaning barn is not a good sign, but also look at the ridge of the roof.  Typically, a sagging ridge line indicates deterioration somewhere in the structure.  Sagging ridge lines can be due to a sagging ridge beam, a rotting timber column on the ground floor or collapsing foundation wall or almost any structural framing member above it.

“You will need to investigate for insect infestation, both current and past.  Powder post beetles can wreak havoc on the structure yet not be readily apparent to the novice homeowner.

John, what about the price of these transformations? Are they affordable?

“Price is always important, but even more so with a barn adaptation.  The structural stabilization could easily represent half the cost of the renovation though it depends on the condition of the barn (frame, siding, foundation, etc.) and what the owner wants to do with it.

“Another consideration regarding cost is the presence of hazardous materials, i.e. lead based paint.  Many old dairy barns were painted inside and out with lead based paint during the early to mid-part of the 20th century.  It can be expensive to either remove or encapsulate.  Another concern is asbestos shingles, often used on roofs and exterior walls of old barns, particularly dairy barns.

“The bottom line – go into a barn project with your eyes open. These conversions are not cheap, but they are enormously satisfying and hold their value well.

John, what are your thoughts on keeping the barn’s integrity as a farm building?

“What I hate to see more than anything short of tearing a barn down and “salvaging” the old timbers is inappropriate ‘glossing over.’ It’s about the worst end of life for an old barn (in my opinion).  When someone tries to make a residential building from an old barn but doesn’t respect its history or its contribution to the visual environment, I feel this is a lost opportunity.  For me, they are destroying the very characteristic that makes it attractive or romantic in the first place.  Far too often people say they love old barns but when they try to change its use and end up destroying it.  I would rather they leave the old barn for someone who appreciates the uniqueness of it and will give it new life.

John, what about “brightening” up the old interior by adding more glass?

“Sure, this can work in lots of ways. One is the installation of end wall windows as we did at River Farm but that’s not for everyone and is somewhat site specific.

Adding windows or sliding barn doors with glazed walls behind them is another way.  Because barns were a farmer’s industrial building it changed with the times and methods of farming.  Windows, sliding doors and additions were frequently added to modify farm structures to fit changing needs.  If [adding glass] is done in an architectural or historical way that continues the farm barn aesthetic, I think it should be acceptable.  But scale and size is important too.

“Another approach is possibly staining the old boards of the ceiling or walls with a semi-transparent stain. This provides some reflectance yet leaves the grain of the old wood in place. I’m against insulating a barn’s walls or the underside of the roof with drywall or some reclaimed old barn boards.  The problem with that is you lose the appearance of the massive heavy timbers, the framework of the walls, the purlins, the joinery, etc.  There is a better way.  We use SIPS panels on the exterior walls and roof. These provide superior R value without destroying the rustic interior look.  On the exterior, SIPS panels are secured to the timber frame and supported by a galvanized base angle.  Once complete and detailed properly, the building can look exactly like the former barn.  It works!

“Of course, electric lighting works too.  Other than possibly hanging an ornamental fixture, I typically recommend carefully placing a spot or some sort of theatrical type lighting on top of beams in specific areas. This will create minimal visual obstruction but can be trained down to a particular area, upward to reflect light off a ceiling, or across the space to an opposite wall.  Where and how you run the electrical conduits and placement of junction boxes requires careful thought.  I recommend not leaving that decision up to the electrician whose aesthetic sensitivity may not agree with the design goals. The same is true of HVAC systems.  A lot of thought needs to go into the type and location of HVAC systems and how ventilation and air movement within a large space can be comfortably distributed.”

Posted in Equestrian News, News and Press, Sustainable Design | | Leave a comment >
09.25.20

Remediating Mold in a Horse Barn

Note: We recently received this question from a follower of ours on Instagram. While this is NOT a Blackburn-designed barn, we felt that others might have similar problems, so we wanted to offer as much help as possible to this horse owner. Some of her photos are included in the post for clarity.

Q: Dear Blackburn: We recently built a backyard horse barn in western Massachusetts.  The timber frame style building is a hybrid run-in shed/horse barn, attached to a track-paddock with sacrifice areas and pastures.  The horses are turned out together 24/7 with run-ins, with option of separate stalls if needed for injury/weather.  This summer, after one year, we found mold in a few areas of the barn.  Since learning about Blackburn, we have been fans, and we seek insights on how to remedy our mold problem in a way that is safe for the horses and hay too.

The barn is 36’x36’ with a raised center aisle.  The south 1/3 of the building is a run-in with a packed dirt floor covered by rubber mats and shavings. The remaining 2/3 has a concrete pad and includes 2 stalls – one used as a horse stall and the other used to store hay.  The 11’ ceiling leads to a hayloft (most hay stored in a separate building) with an 18’x6’ cut-out in the middle of the floor, for both sunlight and ventilation.  Hayloft windows/door on all sides and an open eave towards the top also offer ventilation.  A frost wall surrounding the barn is approx. 1’-2’ above grade. Inside the barn, including the run-in and both stalls, the interior frost wall was covered with resin technology wood screwed directly into the concrete, primarily for safety reasons, to soften the impact if a horse kicks the wall/concrete.  We recently found black (and some white) mold between the frost wall and the resin technology wood.  We have removed the product and bleached the area, but how to proceed…

1- How can we safely cover the interior concrete frost wall within the horse areas (run-in, stalls, grooming aisle, hay stall) so that it has some “give” to prevent injury when a horse kicks it, but which won’t harbor or cause mold? We have considered covering the frost wall with rubber, or adding a vapor barrier and applying new product.

2- What do you recommend we do to the concrete floor and frost wall to store hay and avoid mold in the hay stall? There’s a 4” step down from the aisle (we realize that was a mistake since it traps moisture).  We put a high-quality insulated mat in the horse stall, but the concrete floor is bare in the hay stall.  We use the hay stall for hay now but want to have the option of keeping a horse in there in the future.  (We’ve previously stored hay on a double layer of pallets, plus floor covered by tarp, but with that set-up plus the wood product on the frost wall, the mold grew.)

Warmly,

MA Blackburn Fan

 

A: Dear Fan: While I don’t know for sure what’s causing the mold in your barn, I feel the application of the wood product directly to the concrete frost wall without airspace behind it and near the floor where it is subject to moisture may be the primary problem.  I would suggest removing the wood product material at the frost wall and gluing rubber mats directly to the concrete frost wall to provide protection from horses injuring their legs by kicking the wall.  Provide an angle crib guard along the top edge to help prevent cribbing by horses.

I am not that familiar with the product you used, but I know it is an engineered wood product that has a wide range of uses.

The fact that the barn doubles as a stall and a run-in shed indicates that it generally remains open which is good as it allows air to circulate in and through the barn and reduces the health hazard that might be caused by the mold.

I found it odd to see diagonal framing in the walls between the post framing.  I’m unsure why that was done (maybe to provide horizontal bracing for the timber frame) but because the lower portion of the wall appears to be covered with the wood product it is possible air spaces between the diagonal wood framing trap air in some of the smaller spaces. That could add to the moisture build up. How the barn is maintained (i.e. washing down of the aisle and stalls), is handled could also contribute to the moisture problem.  It appears from your photos that most of the dark staining (mold growth) is along the low portion of the wall at the frost wall and that is probably more a problem of the wood product panels being directly attached to the frost wall than the diagonal framing.

Regarding the hay storage, you should always store hay off of bare concrete.  Using wood pallets is a good way to allow air to circulate around and under the hay.  Hay gives off heat as it cures and if not properly allowed to breath can actually ignite through spontaneous combustion and cause a fire.  Having the barn largely open as a run in shed is helpful but at a minimum the hay should not be stored on the concrete floor.  It should also be stored off the wall several inches to allow the air to circulate around it.  Placing a tarp on the concrete floor as mentioned will not serve any constructive purpose in my opinion and could just trap moisture below it.

BTW, I didn’t see any drains in your stalls?  How do you encourage water out of the stall where the slab is depressed 4 inches?

Incidentally, I noticed a door hook on one of the larger sliding doors at the run in portion of the barn.  That’s a potential hazard.  A horse could rub against the door jamb and the open hook could cause a significant injury.  I’ve seen it happen and it can easily be prevented.  Another type of latch should be used.  There are lots of options out there.

I hope this is helpful.

John

Posted in Equestrian News, News and Press | | Leave a comment >
10.15.19

Optimizing Winter Protection in a Horse Barn Without Compromising Ventilation

Q: I’m in the process of planning a barn in Missouri, and finances require an economical metal post-and-frame structure. I’ve studied Blackburn’s ventilation and lighting philosophies and will incorporate them as best I can.

My question is about orienting the barn. I plan to have a center aisle, with exterior Dutch doors in every stall. Each 12’x12’ stall will have an exit to the main 12’ aisle as well as to an outside run-in. The stalls will be used primarily during more extreme weather or when I need to confine a horse due to injury or illness, otherwise the horses will be outside. Overhangs on both sides of the barn will function as run-in shelters for the paddocks.

I know from your writings that the ideal orientation is perpendicular to the prevailing summer breeze. However, because Missouri’s cold winter winds are from the same direction, the horses on that side of the barn won’t have wind protection when in the run-in areas. I know that’s less of a problem for owners who keep their horses in stalls most of the time, so I’ve not been able to find an answer to this question. I will obviously allow them access to the stalls during the bitter cold weather we get, but for most of the winter all they need is some windbreak. How do I optimize winter protection without compromising ventilation?

Thanks,

Worried about Winter

++++++++++++

A: Orientation is certainly very important when siting your barn. But because wind is always changing and its direction and velocity can be affected by terrain, other structures, and vegetation, the angle is not a hard and fast rule.  It’s good to try and locate the barn perpendicular to the prevailing summer breeze but that also depends on the design of your barn.  If you have lived on the farm a few years you may know the particular wind patterns for your property.

The design of the barn is as critical – if not more so – than the orientation.  How and where you permit air to enter the barn (preferably along the low wall along the long side of the barn and at the eaves where the roof joins the side walls), and where it is allowed to exhaust are critical.  In some areas, it may be necessary to provide some form of close-able dampers on the low wall vents to control the wind and temperature that can impact a horse that is in the stall but doesn’t have the flexibility to get away from it.

The environment within the barn should be within 8 to 10 degrees of the temperature on the outside.  Your barn should ventilate vertically to reduce the horizontal movement of bacterial- and moisture-laden air.

We always say the best environment for the horse is outdoors where it can make its own choices about its environment and health. A naturally-kept horse should be able to get out of the hot sun and find shade or get out of a cold wind in a shelter or behind a wind block.

By turning your horses out most of the time you are certainly on the right track for happy, healthy animals.

Missouri’s winter weather isn’t so extreme that it prevents you from a center aisle barn with stalls on both sides.  Orient your barn so that turnouts are on the windward side of the barn and leave the Dutch doors open so your horses can get inside away from the wind.  For the turnouts on the cold windward side of the barn, blanket the horses.  And keep their winter coats unclipped.

Since you’ve read “Healthy Stables by Design,” you know that Blackburn designs typically use the chimney effect and the Bernoulli principle to create natural ventilation. Our barns become passively designed machines that work to provide healthy conditions for the horses inside.

Good luck with your new barn!

Posted in Equestrian News, News and Press | | Leave a comment >
03.05.19

Design Considerations for Fire Suppression Systems in Horse Barns

Fire protection in an equestrian facility is always a concern of the highest priority. Because we’re often asked, we thought we’d offer information here on the fire suppression details the Blackburn design team has included in some of our latest projects.

At a new barn under construction in Indiana, we’ve specified a Dry Pipe System by Fire Tech, LLC. http://www.firetechstl.com/systems-preaction.php. We could have specified a “preaction sprinkler system,” but chose the dry pipe system because of the dangers of freezing pipes in the cold weather climate of the Midwestern United States.

To quote Fire Tech’s description, “A Preaction Sprinkler System is a system which employs automatic and closed-type sprinkler heads connected to a piping system that contains air (either pressurized or non-pressurized), with a supplemental system of detection serving the same area as the sprinklers. The systems are typically used in applications where the accidental discharge of water would be catastrophic to the usage of occupancy.

“Preaction Sprinkler Systems are similar to Dry Pipe Systems in that the water is kept from entering the piping valve, in the case a preaction valve. This valve is held closed electrically, only being released by the activation of the detection system (heat or smoke detectors mainly) when an electrical signal is sent to the releasing solenoid valve. The water then fills the pipe, ready for the activation of the sprinkler heads. Preaction systems can be arranged to be activated by only one detection device type, or many.”

In Indiana, our architects specifically called for a dry pipe system because of the potential for freezing temperatures, but also in case “one of the children kicks a soccer ball and takes out a sprinkler head” (the client’s words). With a dry pipe system, the sprinklers won’t go off unless they also sense smoke or fire (depending on the detector type). A false alarm could flood and ruin the barn’s expensive finishes. And using recessed/concealed pop up heads is a good idea where you can.

Another critical reason Blackburn specified a dry pipe system is because of an issue with water demand; the Indiana farm doesn’t have sufficient well water on site to power the system. Because of this, our client connected to county water. Keep in mind that If you’re on a well, you’ll likely never have enough pressure to support a fire suppression system. The gallon per minute (gpm) for firefighting is higher than your average ground well can produce. This means you must store water on site in a tank or pond.

At Sheik Island, one of our projects in Florida, we stored water below ground. In California, at a private facility, we installed an above ground tank adequate to run the system as required by the local fire department. Additionally, we posted signage limiting the occupancy (should the owner decide to sponsor a large event in the arena). The clients obtain a special permit when larger events occur, and they hire the local fire department to have a truck on hand during the event.

At the Devine Ranch, in Aptos, California, and at the Moss residence, also in fire-prone California, we provided on-site storage tanks with backup generators to operate a pumping system.

Next up on the Blog: fire limiting design guidelines we build into our projects.

Posted in Equestrian News, News and Press | | Leave a comment >
01.09.19

Adding Stalls to an Indoor Riding Arena? Good Idea or Not?

Adding Stalls to an Indoor Arena

Over the years, Blackburn has been asked what we think of adding stalls along the side of an indoor arena. Sounds like a good idea, right? Well, we strongly recommend against it. The problems are many.

1. Air Quality. Forced to breathe arena dust many hours of the day, stalled horses live in an environment that isn’t healthy. We recommend instead that the stall portion of the stables be connected in a separate but attached structure running perpendicular to the barn. Not only does this arrangement help isolate the arena dust from the barn, it allows the barn to sit independently. The structure can then catch the prevailing breeze which permits two scientific principles (Bernoulli principle and the chimney effect) to provide natural ventilation and light to the barn.

2. Fire Safety. We always recommend fire separations by providing sliding doors to isolate the barn from the arena in case of fire. These doors may or may not be rated fire separations. The decision is usually driven by cost, and we often provide an automatic rolling fire rated shutter to isolate the two separate areas – this at least reduces the risk of smoke moving between structures. (Quite often it’s the smoke that is more dangerous and faster moving than the actual fire.) The isolation by sliding doors also provides critical time to get horses out of barn. If the arena and barn share the same space, there is less opportunity to isolate fire or smoke from the stable area. Furthermore, when the stables are parallel and part of the arena, the structure is generally shared – raising the risk it could collapse and trap horses inside.

3. Cost, Scale and Building Height. When stalls are designed as part of an indoor arena, the design requires a wider structure (often steel due to the long spans) which is typically more expensive. When it’s a separate but attached structure, it can be framed in wood with smaller spans reducing the cost of the framing. If the stalls are part of the indoor arena, then the building becomes wider which also means a corresponding height increase. In many areas, the local zoning codes restrict building heights. We have found typical restrictions of 35 feet. It’s difficult to get any height in the barn or arena if you are trying to build a 100 x 200 ft arena with a row of stalls and aisle way. Also, from an aesthetic perspective, wider and taller building begin to get enormous and have the potential to look like an airplane hangar and overshadow the entire farm.

4. Storm Water Issues. Finally, if your property is not flat, such a structure with a large footprint may require significant grading that can be expensive and create storm water issues. By breaking the barn and arena into two connected structures you can more easily work it into the natural slope of the land. Also, the isolation of the barn and arena permits opportunities to push the arena into the ground – helping to reduce the scale and height of the arena above finish grade. The entry to an observation area can be elevated above the arena floor (but entry level still at grade) for more easily viewing over the kick wall from a sitting position.

Blackburn has designed many arenas with this perpendicular arrangement. Rocana Farm, designed by us in 2002, is a great example of what we mean. Stalls at this hunter/jumper facility are attached to the enclosed arena with an elevated observation room, tack room, wash and grooming stalls.

Posted in Equestrian News, News and Press | | Leave a comment >
12.04.18

Thoughts on Horse Barn Heaters

Orr-Heating BlogA client recently asked one of our architects for recommendations on adding heaters in the barn.

When an owner requests forced air electric heating system in the stalls, we advise against it for several reasons:

1) Forced hot air rises and heat stays at the ceiling level, adding unnecessarily to the cost of operating the barn. Blackburn barns are designed to allow air to escape thru the roof vents, so at a minimum sending heat skywards doesn’t make financial sense.

2) Forced air systems move airborne particles around the space and, given the size of the barn and the heat loss expected thru the roof vents, heaters must pump a lot of air at a high velocity to provide sufficient heat to keep the barn to a temperature that might be considered sufficient (which varies with personal preference).

3) Forced air heaters are unhealthy for horses because they spread dust, mold and disease throughout the stable area. Horses give off a tremendous amount of moisture, especially in winter, and that moisture contains bacteria and other viral matter that can be harmful to their sensitive respiratory systems and spread to other horses. If a barn is closed up too tightly (the barn needs to breathe in all temperatures) the barn can become too warm and increase the opportunity to breed bacteria that would normally be ventilated out of the barn. There may be some exceptions for older and ailing horses but a tightly-closed, heated barn is often more harmful than helpful. We recommend discussing with your vet exceptional conditions that may be needed for young, aging or infirm horses.

Strategically placed infrared heaters can be a good choice to keep the chill at bay in human-occupied areas.

Infrared is another term for radiant heat. For example, a stove, fireplace, oven or even our own sun emit infrared (radiant) heat energy. That energy converts to heat, warming the surrounding air.

In a barn, infrared heaters are specially made to produce safe, comfortable radiant heat. When asked by a client, we specify that heaters are directed downward from the ceiling toward a target area below. In an equestrian facility, infrared heaters can be directed toward wash stalls and/or and grooming areas, or down a common walkway, between horse stalls or even in riding arenas.

Blackburn Architects uses two scientific principles to ventilate horse barns – the Bernoulli Principle and the Chimney Effect – vertically removing harmful bacteria and ammonia gases that can cause disease and odors. Providing heat for the horse by forced air does little if anything to help the horse except create harmful, unhealthy conditions.

When requested by a client, we can specify heated floors. Infrared tube heaters emit soft, comfortable radiant heat energy without creating drafts. Infrared heats the ground. Warm floors = warm bodies & feet.

As we all know, horses can naturally withstand colder temperatures better than hot temperatures. If permitted to keep their winter coat and remain dry, horses can withstand even very low temperatures. For colder temperatures, we recommend keeping cold drafts off the horses by closing Dutch doors at stalls (add weather stripping to the doors if needed) and closed aisle doors. In other words, if a horse can stay dry and get out of a steady breeze or draft they have a much better chance to maintain their own health.

Posted in News and Press | | Leave a comment >
10.17.18

Recommendations for Adding Glass in a Horse Barn

WinterFarm_Insta

What’s the safest way to incorporate glass in a horse barn? If you’ve been following our work, you already know that Blackburn Architects’ mission is to promote as much natural light and ventilation in horse structures as possible. Naturally, this means we add a lot of windows to our designs. In its safety recommendations for the stable, Rutgers NJ Agricultural Experiment Station cautions that “windows need to be inaccessible to horses and livestock, covered with bars or screening and made of safety glass.” (https://esc.rutgers.edu/fact_sheet/safety-recommendations-for-the-stable-barn-yard-and-horselivestock-structures/). So how do our architects protect the horses and still use a lot of glass in our designs?

1. Use Tempered & Laminated Glass
We recommend that all glass in a horse stable be tempered, including glass that’s laminated. Tempering and lamination do two separate but similar things to increase the safety of glass if/when it breaks: Tempering makes the glass break into small chunks as opposed to slivers and shards, while the lamination gives the glass a slightly greater resistance to breaking and keeps the glass in place when and if it breaks.

Laminated glass consists of a clear plastic laminate sandwiched by glass on both sides. Since horses have access to both sides of a glazing unit, ideally both sides should be laminated and tempered. If this approach is too costly for your budget, stick with everything being tempered and omit the lamination. Laminated glass does not always age as well as tempering. The laminate can shrink and pull in from the corners of the glass, and eventually become visible over time. We prefer tempering.

2. Minimum Thickness of Glass and Airspace
To arrive at the minimum thickness of glass, work backwards from the depth of the frame, minus about 1/4”. Each glass manufacturer determines what spacer sizes they offer. Understand that the more airspace you can allow the better, but each manufacturer works with a few different pre-set size spacers. Use the largest one that still allows the glazing unit to fit within the frame.

3. Special Considerations for Cold Climates
In cold climates, we specify glass with a high solar gain and low emissivity. In technical terms, the glass meets the following guidelines:
1. A Solar Heat Gain Coefficient (SHGC) around 0.55
2. A U-value of less than 0.33
3. A higher value Visible Transmission (VT)
4. Use double-paned glazing units with low-e gas that has a vacuum sealed gasket between the panes of glass. The pocket between panes of glass is filled with an insulation gas, most typically argon.
5. Consider using low emissive (low-e) glass panes (low-e prevents the transfer of heat from warm to cold). The low-e coating (typically a metallic oxide) should be on outside of the innermost pane of glass.

There are pros and cons that should be considered with each option 1-5 above. For instance, with #4, over time and if the gasket seal fails, you can begin to see condensation between the panes of glass. Whereas with #5, you may be able to see the coating from certain angles, especially if you are wearing polarized sunglasses. Since the advantages are a bit more obvious, and similar to one another (i.e. tempered vs laminated, and low-e gas vs low-e coated glass), here is a summary of some of the disadvantages to each option:

Tempered only – glass may still shatter (in harmless pieces) and fall to the ground.
Laminated only – laminate can discolor over time and shrink in from the corners of the glass.

Low-e gas filled glazing unit – if the gasket fails, condensation can form in between the glass.
Low-e coated glass – may be visible in certain light conditions, or when wearing polarized sunglasses. You can sometimes see this on automobile glass.

To summarize, a good starting place for adding glass to your barn begins with tempered glass, meeting the SHGC and U-values recommended above. A step beyond this is low-e coated glass, since with #4 (low-e gas) you can expect the gaskets to fail at some point, and the glazing unit will need to be replaced. If the coating of the low-e coated glass is too “visible,” then low-e gas may be the better option, with the expectation that you may need to replace some of them again in 10 to 20 years, if and when the gaskets fail.

Posted in Equestrian News, News and Press | | Leave a comment >
06.05.18

The Zucker Race Horses

IMG_1193

IMG_1190

A job interview is not exactly an expected set up for an art sale. So when Lauren Zucker (now Richards) came looking for a job at Blackburn Architects some years ago, she found one. One she didn’t accept because graduate school had a stronger pull.

But in a strange twist, John Blackburn liked the student artwork she showed in her portfolio so much he bought it. Two beautiful Lauren Zucker black oil bar on paper works hang in the Blackburn Architects’ offices in Washington, DC. The large 48’x60’ framed paintings are captivating for the brush strokes evoking the fevered jostling of racehorses leaving the starting gate. They are lovely paintings, and visitors to the office often comment on them.

She described her work this way:

Jockey: Horse
The Race

The Race: Within the confines of 10 furlongs there are meta-corporeal aspects of the horse race never experienced by the spectator. I first knew the horse race as an unfolded experience through the medium of literature. Drawn out in detail were the visceral relationships between horse and jockey, the operations/politics implicit in a racing farm, the strategies and traditions of breeding and training, the excitement of race day morning, and the cognizant thought behind every move during the course of the race. The race compresses into 2 minutes, the life experience of each racer- horse or jockey.

The Drawing: Through drawing, I looked to fold the life narrative of the racer into gesture. Then, as in the race, montage the narrative of different racers. I found inspiration for expressing this agony of entanglement in Picasso’s Guernica. The narrative gesture of war is apparently not unlike that of the horse race.

The process of these drawings was subtractive, many beginning as a coat of black oil bar. The slow drying time of oil bar and linseed oil allowed me the time to carve the horses’ bodies out the blackness. Portions of the drawing were reworked over and over again, conveying motion/time lapse through the multiplicity of elements, such as the doubling of the jockey’s hand in different positions.

There is a dichotomy in horse racing which at once evokes both nobility and grit which I found to exist even at the scale of the horse’s eye, loaded with both the noble courage and animalistic fear. And in the relationship of the fear in horse’s eye to the Jockey’s eye of focused determination. “

As time passed, though, Lauren’s identity was lost to Blackburn Architects. We could make out most of her signature in the lower right hand of the paintings, but was it Lauren Ziker, Zucker, Luker? What had become of the artist who made the art we live with every day? Was she still an artist? A practicing architect? We didn’t know. Finally, John was inspired to track Lauren down through a connection to a colleague who knew her and had kept in touch. And voila! Lauren is indeed still an artist, and an architect, and she was so excited we had tracked her down.

“I have such great memories of Blackburn Architects and of John. I remember being equally disappointed that the timing didn’t work out as the job would have merged my two greatest passions as a life-long horse lover / equestrian and architecture. I am still working in architecture and still enjoy painting and drawing.”

https://www.laurenzuckerrichards.com/

Posted in Equestrian News, News and Press | | Leave a comment >
04.24.18

Retrofitting an Existing Barn Roof with Skylights & Vents

Sagamore 5With careful attention to design details, it is possible to retrofit your barn to be healthier for your horses. One important renovation to existing built structures is the addition of skylights and ridge vents to increase light and air flow.

Only a fortunate few horse owners design and build a barn from the ground up. Most buy a property with an existing barn. As the photos illustrate, Blackburn Architects’ client Kevin Plank, the CEO of Under Armour®, bought historic Sagamore Farm in Maryland, and undertook a significant renovation to add light and ventilation to the interior of his historic main barn.

Significant expenditures are not necessary, however. In this discussion, I’m offering simple recommendations for achieving healthier living space for horses starting with an existing barn.

VENTING OPTIONS

For venting an existing barn roof, I suggest one of two options:
1) Add Dutch doors along the barn sides or
2) Add a vent along the bottom edge of the skylight (or ridge if that works best though I prefer the curb vent for better free air access).

Option 1: Add Dutch doors along the barn sides
This option provides good access for ventilation to each stall and a great method of controlling air flow. An owner has the option of leaving just the upper door open to reduce the flow or open both upper and lower doors to give maximum free area. (Of course, in order to open both doors for full access you’ll need to add an interior mesh panel to keep horse in the stall.) If Dutch doors aren’t possible or within the budget, then I recommend adding low wall vents to bring in air low to the floor (which is good for foals and to vent odors caused by ammonia gases near the floor). The vents should be dampered for air control and screened to keep rodents from getting into stalls.

Additionally, Dutch doors provide an abundance of natural light, which reduces the need for electric lighting in the barn and helps purify the stall flooring, reducing the creation of harmful ammonia gases.

Option 2: Add a vent along the bottom edge of the skylight (or ridge)
This option allows for vertical ventilation of the barn using the Bernoulli Principle and the chimney effect. Though the existing barn may not have the best angle for prevailing breezes or roof slope, it will help nevertheless. I also recommend vents at the top of the wall at the roof eave if they can be added. This permits year-round ventilation above the heads of the horses, but still ventilates the barn vertically using the techniques described above.

ADDING SKYLIGHTS

There are a variety of methods and materials that can be used to retrofit skylights into an existing roof. At Sagamore Farm, Blackburn Architects’ design replaced the existing shingles with a new metal roof (not necessary; Sagamore’s roof shingles were worn out and metal was chosen as a better long term material). In more typical circumstances where the existing shingles are salvageable, simply remove the shingles along the ridge and cut out the sheathing or sub roofing material, leaving only the roof rafters.

Continuous curbs should be built along the edge of the opening. Although a continuous skylight or curb is not necessary, I find it aesthetically and functionally preferable. A skylight can then be placed on top of the curbs spanning from one side of the aisle to the other. The curb can and should be vented. The size and amount of free area depends on the barn design, size and location. The skylight width does not have to span the full width of the aisle but somewhere between 8 to 12 feet should be adequate.

The skylight can be either glass (costly and should be safety glass) or some form of polycarbonate. Check your local building codes for requirements. I do not recommend clear glazing. Translucent glazing reduces the visibility of dirt and filters light, which better serves the barn interior. It’s best not to let a strong band of sunlight hit a stalled horse for a long period of time. I also recommend painting the interior of the roof and framing members a light color to improve reflectance.

If a continuous skylight is not possible, then individual roof skylights can be installed over the center aisle. However, if the skylights are not high on the roof and are not vented, they may not do much to increase the barn’s vertical ventilation.

If the barn has a loft it may be possible to remove it, leaving specific structural members spanning across the barn to hold the building together and to provide wind shear strength to the barn. If the loft is used for hay storage (which I don’t recommended for health and safety reasons), then it may be possible to remove a portion of the loft over the aisle leaving the loft in place over the stall for storage or the reverse of that (remove the loft over the stall but leave it in place over the aisle).

While these approaches to increasing light and ventilation in existing structures can work wonders, you should always contact a structural engineer before installation of skylights to determine if the barn can take the modifications needed of if some additional structural work needs to be done.

Posted in Equestrian News, News and Press | | Leave a comment >
02.05.18

Celebrate a New Barn in 2020

beechwood aisle_small
Been thinking about a custom barn, or buying property with existing structures that need an extensive overhaul?

I thought I’d take a minute and explain Blackburn Architects’ process for designing a new equestrian facility and overseeing its construction. While not carved in stone, for planning purposes, can easily become a two-year process.

The first step is usually a visit by me or another Blackburn architect. The initial meeting is our first chance to meet, walk the site, look at any existing buildings and discuss the project goals. I’m a firm believer in “a picture is worth a thousand words” but “being there is worth a thousand pictures” Following this, we’ll send a proposal for service, which outlines the process and fees.
Once a contract signed, we get to work immediately.

The timeline usually looks something like this:
• 6 to 10 weeks for Feasibility Study, Site Assessment and Master Plan
• 1 to 2 months for Schematic Design
• 2 to 4 months for Design Development and Construction Drawings
• 1 to 2 months for Permitting
• 12 to 16 months for Construction

At Blackburn Architects, equestrian design starts with the horse and ends with a building that fits the horse, the owner, and the surrounding environment like a glove. It’s as simple and beautiful as that.

Let’s explain the steps in greater detail:

Feasibility Study / Site Assessment / Master Plan
The goal of the Feasibility Study is to determine, as early in the process as possible, whether the intended project fits the owner’s program, the site, and the budget.

We assess any existing building(s) and the site. We take measurements to determine if an in-place structure will work for the goals of the project. We study the land until we come to a clear understanding of wind and solar direction, soils, changes in elevation – all natural and architectural characteristics that guide placement and design of any new buildings. Central to the success of the project, this “Master Plan” addresses all these things and more, providing a road map for the success of all future phases of our work.

The site analysis also includes a review of applicable zoning and easements for the property; we determine what (if any) limitations or restrictions may apply at the property. Land disturbance allowances? Height restrictions? Set-backs?

In tandem with the site evaluation (as soon as we have a contract), we send the client a unique Blackburn Architects questionnaire that we’ve developed over the years. Answers are collected and inform the design; starting off the process with clear direction from the client. It is extensive and though it covers about 25 pages, once it is completed it “paints” a picture of exactly how you would like your farm to operate. The efficiency of the operation is critical and can have a huge impact on your operating cost and maintenance budget.

Schematic Design
Moving seamlessly from the master planning phase (often there is a fuzzy line here where one ends and another starts), we start schematic design. In this step, we help our clients visualize the project design with a variety of techniques using both computer and hand renderings to illustrate the scale and the relationship of the project elements. Ideas, concepts, goals take form at this stage.

Budget Development
Once we’ve worked up outline specifications for the work, we can begin to get a rough idea of the costs. At this point we will either develop a rough estimate based on our 35 years experience with over 300 farm projects, consult with a professional cost estimator or a builder who is familiar with the building type in your location.

Design Development and Construction Documents
Once we have the site layout, design, and budget, drawings and other documents give serious form to interior and exterior finishes, and firmly establish the size, character, and details of the project. These documents will be used by our professional consultants to design the electrical, gas, and other utilities. When these systems are defined, and we have a basic finish schedule and budget, we’re ready to file for the permit and start construct of the building.

Bidding and Construction Administration
With the construction documents complete, we can help clients select a contracting company through a “bidding” process for the work, or we can work with a client’s pre-selected Construction Manager. We work side-by-side with our clients to ensure that the best and most informed decisions are made during this process.

While in my experience this process typically lasts about 18 to 24 months, a lot of this depends on factors that are outside of either our control or our clients. The time of year and weather, for instance, can greatly influence how fast construction progresses, especially in colder climates. Pastures have a growing season, and they need at least a year (maybe two) to establish.

Designing and constructing a custom facility is a very subjective process, which is guided by all kinds of factors including the complexity and size of the structures, the time of year, the strictness of zoning regulations and neighborhood associations, state environmental regulations, and so on. But rather than let these things hold you back, I say, “Jump In” or give us a call to discuss how the process can work for you. When you slide open the doors to your dream facility and see the happy heads of your horses looking over the stall doors, all the time and effort will vanish. At least that’s been my privileged experience over all these years.

Posted in Equestrian News, News and Press | | Leave a comment >
  • Page 1 of 2
  • 1
  • 2