The Latest

Email Subscription

10.15.19

Optimizing Winter Protection in a Horse Barn Without Compromising Ventilation

Q: I’m in the process of planning a barn in Missouri, and finances require an economical metal post-and-frame structure. I’ve studied Blackburn’s ventilation and lighting philosophies and will incorporate them as best I can.

My question is about orienting the barn. I plan to have a center aisle, with exterior Dutch doors in every stall. Each 12’x12’ stall will have an exit to the main 12’ aisle as well as to an outside run-in. The stalls will be used primarily during more extreme weather or when I need to confine a horse due to injury or illness, otherwise the horses will be outside. Overhangs on both sides of the barn will function as run-in shelters for the paddocks.

I know from your writings that the ideal orientation is perpendicular to the prevailing summer breeze. However, because Missouri’s cold winter winds are from the same direction, the horses on that side of the barn won’t have wind protection when in the run-in areas. I know that’s less of a problem for owners who keep their horses in stalls most of the time, so I’ve not been able to find an answer to this question. I will obviously allow them access to the stalls during the bitter cold weather we get, but for most of the winter all they need is some windbreak. How do I optimize winter protection without compromising ventilation?

Thanks,

Worried about Winter

++++++++++++

A: Orientation is certainly very important when siting your barn. But because wind is always changing and its direction and velocity can be affected by terrain, other structures, and vegetation, the angle is not a hard and fast rule.  It’s good to try and locate the barn perpendicular to the prevailing summer breeze but that also depends on the design of your barn.  If you have lived on the farm a few years you may know the particular wind patterns for your property.

The design of the barn is as critical – if not more so – than the orientation.  How and where you permit air to enter the barn (preferably along the low wall along the long side of the barn and at the eaves where the roof joins the side walls), and where it is allowed to exhaust are critical.  In some areas, it may be necessary to provide some form of close-able dampers on the low wall vents to control the wind and temperature that can impact a horse that is in the stall but doesn’t have the flexibility to get away from it.

The environment within the barn should be within 8 to 10 degrees of the temperature on the outside.  Your barn should ventilate vertically to reduce the horizontal movement of bacterial- and moisture-laden air.

We always say the best environment for the horse is outdoors where it can make its own choices about its environment and health. A naturally-kept horse should be able to get out of the hot sun and find shade or get out of a cold wind in a shelter or behind a wind block.

By turning your horses out most of the time you are certainly on the right track for happy, healthy animals.

Missouri’s winter weather isn’t so extreme that it prevents you from a center aisle barn with stalls on both sides.  Orient your barn so that turnouts are on the windward side of the barn and leave the Dutch doors open so your horses can get inside away from the wind.  For the turnouts on the cold windward side of the barn, blanket the horses.  And keep their winter coats unclipped.

Since you’ve read “Healthy Stables by Design,” you know that Blackburn designs typically use the chimney effect and the Bernoulli principle to create natural ventilation. Our barns become passively designed machines that work to provide healthy conditions for the horses inside.

Good luck with your new barn!

Posted in Equestrian News, News and Press | | Leave a comment >
07.25.19

Design Strategies for Fire Prevention in the Horse Barn

How can you can be proactive in the design of your farm and your barn to protect your horse from the threat of barn fires? What can you do to minimize the damage and loss of buildings and most importantly your horse and human life?

Prevent, Contain, Suppress

Prevention is your best protection and your first line of defense. There are any number of reasons why barn fires occur. Many are outside your control but there are steps you can take to prevent a fire from getting started. Never overlook important management practices – organize, clean and prepare.
1) Keep a clean barn/farm (dust, cobwebs, bird nests, debris).
2) Keep aisle ways clear.
3) Keep your barn neatly organized.
4) Develop a fire safety plan and practice it.
5) And, of course, NO SMOKING!

PREVENTION

Site planning is a critical component of farm fire prevention.
We recommend a separation of buildings and hazardous functions/materials from the barn.
Generally, we use a rule of thumb of 30’ to 50’ and sometimes 100’ depending on the terrain, building codes and building materials used. Hay / bedding, equipment and other flammable materials should be stored separately from the barn and isolated if possible within masonry fire resistant structures.

Manure storage is a critical concern and can be a flammable substance if not stored properly. It should be isolated separately.

Egress from the barn for people and horses. In case of a barn fire, the barn should open into a contained area so horses can be let loose quickly yet contained. We recommend locating at least one good size paddock near the barn that can receive a number of horses at one time. If possible, provide perimeter fencing around your farm to contain horses that may get loose and out on a roadway. Consider access to the farm and buildings for the fire trucks (we recommend a 12’ to 14’ access road minimum) with adequate support and clearance for the trucks and other emergency vehicles. Provide adequate clearance under trees, power lines and over farm bridges. Make sure you have adequate turn-around space for the emergency vehicles.

A suitable water source is critical. Provide either an on-site storage ponds, water tanks (above or below ground) and your water supply. If it’s from a well or municipal source consider the GPM flow, water pressure. You may also want to have a generator on the farm that can serve pumps if the power service should fail. And remember, fighting a fire will produce a great deal of water and that will turn into mud. So consider surface drainage for added safety around the barn.

Building layout is critical for preventing barn fires. Blackburn always designs wide center aisles. Keep them free of clutter. A shed row provides a safer layout for escaping a burning barn but they are not suitable in all locations.

Design your barn with no dead end aisles. Provide at least two exits for people and horses. We recommend openings of 1½ to 2½ the width of your horse (from stall and barn).

Consider the swing of doors – the direction of swing as well as latches used. We recommend sliding doors in the main aisle and hinged doors from stall to turnout stalls connected to the barn. The pin latch is far safer than the typical throw bolt latch. The pen latch is simpler in design (fewer moving parts and no springs and much faster to release.

The designers at Blackburn Architects make disaster prevention a priority through careful site planning and building design following THREE BASIC DESIGN PRINCIPLES:

1. BUILDING SYSTEMS/MATERIALS/FINISHES

The building materials and finishes are as critical as the barn layout. You should check your local building codes. (A good reference is the NFPA 150, 2019 edition). Though barns in many jurisdictions may be considered agricultural structures and not required to comply to building codes, we recommend you consult the NFPA code and adhere to it where possible.

There are four types of framing materials used in construction of equestrian facilities: light wood, timber, steel, masonry.

Light wood is the most common and lowest cost, but has the lowest resistance to fire. Timber frame is much safer. It will stand longer without collapse than light wood frame. Steel frame is flame resistant and can provide excellent protection. However, it is commonly used with light wood framing and other flammable finish materials that reduce its effectiveness in preventing or protecting from fire.

Electrical systems must be dust proof, rodent proof. Protect all light fixtures with cage or shatterproof lens. Remove or repair any frayed or damaged wiring. Do not use residential extension cords and do not overload circuits. Do not use household box fans. Heating systems within the barn should be kept to a minimum. Remember the barn is for horses, not humans.
Do not use portable space heaters and in warm rooms provide for installation of permanent heating equipment.

Lightning protection is another area of concern. Lightning rods are relatively inexpensive and should be installed on all barns if not all farm structures. Provide proper grounding devices and protection for all electrical equipment. You can install a warning system or rely on your phone weather app to alert you when lightning is near.

2. COMPARTMENTALIZATION

The second design principal is containment or compartmentalization. Compartmentalization uses firewalls and fire separations to contain the spread of fire and smoke. Insist that your builder close up all openings around beams, ducts, etc. Also, close up or limit attic or horizontal spaces thru use of fire curtains within those areas.

Your barn should insure proper ventilation for the health of your horse but you should be able to limit ventilation where necessary. The standard ventilation guideline is 1 sf per 100 sf of floor area in barn area or 1 sf for every 30 to 50 sf floor area in hay/bedding area.

Another design consideration to consider is to break up barns into smaller structures. A 24- stall barn is most efficient for a horse operation, but if possible it’s better to create smaller barns or provide fire and smoke separations within the barn layout. This level of planning will provide a better level of protection thru isolation.

3. SUPPRESSION/DETECTION

The third design principal is suppression / detection. Early warning devices can be very effective, but they can be difficult in barn environments due to the dust and moisture. Always provide fire extinguishers throughout the barn and make sure they are inspected annually, they are the right type (A, B or C and we recommend having all three).

We also recommend including three types of detector devices; smoke, heat and flame. Each may be appropriate depending on the barn environment. For example, smoke detectors can be set off by dust and moisture. In those areas, you may want to consider another type, such as the laser light beam. Blackburn has used laser light beams in select areas, but they need to include some sort of delay mechanism so birds and other elements that can break the beam do not trigger an alarm. Consult with a fire detector manufacturer for the proper type and installation.

A smoke detector is your best line of defense, but a fire sprinkler is the best method you can install in your barn to suppress a fire. They come as either a dry or wet pipe system. The dry system is most common in barns that are subject to freezing temperatures. A wet pipe system is usually a lower cost but has limited use in unheated barns in sub-freezing areas.

Something to consider in a barn that may have nice finishes that could be subject to damage if the sprinkler system were set off by accident is the pre-action system. The Pre-action system is one that employs an automatic warning system that activates before the sprinkler system activates to protect from accidental discharge and protects damage to interior finishes
Finally, we strongly recommend that you consult with your local fire department regarding your fire protection plan and get your design approved.

Posted in Equestrian News, News and Press, Sustainable Design | | Leave a comment >
06.24.19

Keeping Them Healthy: Thoughts on the Design and Installation of Dry Lots on Horse Farms

Let’s talk about dry lots. Essential on nearly every equine facility, dry lots vary widely in size, location and construction.

By nature, of course, horses are herd animals evolved to roam and graze on sparse prairies.  We’ve introduced a complete change to the evolutionary process – incorporating diets of grain and lush pastures. The resultant problems are many, but our solution is simple. Limit the horses’ activities or diet as you give them access to open air and light.  

Blackburn recommends dry lots on most, if not all, of the farms we design. Sadly, too many farms have unintentional dry lots because of inadequate pasture management.

Why create a healthy dry lot?
1. Control the horse’s diet.
2. Preserve paddocks thru rotation.
3. Control moisture and its effect on hooves.

Here are nine things to consider:

Location: Choose a place close to the barn for ease of access.  Provide adequate sized gates for horses but also an occasional vehicle.  Select a relatively flat location but one that drains well and isn’t too isolated so horses can socialize but generally remain separated.  

Materials: The footing should be firm but not hard packed.  It must be designed to drain well to allow moisture to either drain thru or away without causing erosion. Sandy soil is preferable but some sort of gravel that is easy on the feet or, even better, an engineered footing similar to your arena should work perfectly. 

Size:  The size can vary, but if you are creating the dry lot to limit the horses’ movement for health reasons, you may want it to be smaller than larger.  We recommend multiple dry lots of varying sizes to accommodate many uses.

Fencing:  It goes without saying that your fencing needs to be sturdy. See Activities below.

Shelters: Some form of shade shelter for fly & weather protection is preferred – by humans, but horses may never darken the interior.

Feeding: Various forms of slow feeders, salt blocks, etc. can be used.  If you are restricting the horse’s diet, we recommend consulting with your vet about setting up a feeding regimen that can be incorporated into your use of the dry lot.

Activities:  Spreading hay rations around the lot encourages movement; toys for activity or human interaction can be very helpful.  We always recommend consulting with your veterinarian because no two horses are the same. You and your vet know what’s best for your horse.

Socialization:  Locating the dry lot close to other horses reduces stress and is more emotionally relaxing.

Footing: The dry lot surface should provide a safe and comfortable footing for horses but it must also drain well.  Therefore, we recommend that the upper surface/footing be 4 to 6 inches of footing material (stone dust, sand, engineered footing material as described above a drainage layer) or possibly 8 to 12 inches of pea gravel, allowing the foot to sink in without undue pressure on sensitive areas.  The drainage layer can be 1/2 inch to 1 inch stones. You can add an interlocking grid within this layer to provide additional stability of the base layer and improve drainage.

Posted in Equestrian News, News and Press | | Leave a comment >
03.05.19

Design Considerations for Fire Suppression Systems in Horse Barns

Fire protection in an equestrian facility is always a concern of the highest priority. Because we’re often asked, we thought we’d offer information here on the fire suppression details the Blackburn design team has included in some of our latest projects.

At a new barn under construction in Indiana, we’ve specified a Dry Pipe System by Fire Tech, LLC. http://www.firetechstl.com/systems-preaction.php. We could have specified a “preaction sprinkler system,” but chose the dry pipe system because of the dangers of freezing pipes in the cold weather climate of the Midwestern United States.

To quote Fire Tech’s description, “A Preaction Sprinkler System is a system which employs automatic and closed-type sprinkler heads connected to a piping system that contains air (either pressurized or non-pressurized), with a supplemental system of detection serving the same area as the sprinklers. The systems are typically used in applications where the accidental discharge of water would be catastrophic to the usage of occupancy.

“Preaction Sprinkler Systems are similar to Dry Pipe Systems in that the water is kept from entering the piping valve, in the case a preaction valve. This valve is held closed electrically, only being released by the activation of the detection system (heat or smoke detectors mainly) when an electrical signal is sent to the releasing solenoid valve. The water then fills the pipe, ready for the activation of the sprinkler heads. Preaction systems can be arranged to be activated by only one detection device type, or many.”

In Indiana, our architects specifically called for a dry pipe system because of the potential for freezing temperatures, but also in case “one of the children kicks a soccer ball and takes out a sprinkler head” (the client’s words). With a dry pipe system, the sprinklers won’t go off unless they also sense smoke or fire (depending on the detector type). A false alarm could flood and ruin the barn’s expensive finishes. And using recessed/concealed pop up heads is a good idea where you can.

Another critical reason Blackburn specified a dry pipe system is because of an issue with water demand; the Indiana farm doesn’t have sufficient well water on site to power the system. Because of this, our client connected to county water. Keep in mind that If you’re on a well, you’ll likely never have enough pressure to support a fire suppression system. The gallon per minute (gpm) for firefighting is higher than your average ground well can produce. This means you must store water on site in a tank or pond.

At Sheik Island, one of our projects in Florida, we stored water below ground. In California, at a private facility, we installed an above ground tank adequate to run the system as required by the local fire department. Additionally, we posted signage limiting the occupancy (should the owner decide to sponsor a large event in the arena). The clients obtain a special permit when larger events occur, and they hire the local fire department to have a truck on hand during the event.

At the Devine Ranch, in Aptos, California, and at the Moss residence, also in fire-prone California, we provided on-site storage tanks with backup generators to operate a pumping system.

Next up on the Blog: fire limiting design guidelines we build into our projects.

Posted in Equestrian News, News and Press | | Leave a comment >
01.25.19

Ground Surface Materials: 10 Recommendations for the Exterior of a Horse Barn

One of the design considerations in nearly every Blackburn equestrian project is ground surface materials to be used at the exterior of the barn. Hopefully, the information below will be helpful in planning for your barn.

First consideration is it to be porous vs. non porous?
Either will work in this application but you need to build in some sort of drainage system for both, either on the surface or below the surface.  

1)  Interlocking rubber brick pavers.  The Blackburn Architects’ team opinion is that this is the best all-around flooring system for horses because of its durability and aesthetic options.  It’s slip resistant and holds up to abuse and in a wide variety of environmental and weather conditions.  It can be set loose on a porous or non-porous sub-base or glued down on a firm base like concrete.

2)  Oil base chip and seal: Chip seal is a surface treatment used on light traffic roadways/driveways, some lead paths and other areas used for horse or farm traffic.  We do not use it very often anymore due to some environmental concerns in some jurisdictions (it typically requires a base layer of asphalt and oil as a binder).  Chip seal basically combines one or more layers of asphalt with one or more layer of aggregate. Oil is often used as a binder. Ground up recycled tires are sometimes used as an aggregate.  It tends to be slip resistant though it may deteriorate in time.  Its life time is typically 5 to 7 years before it needs re-surfacing.  

3)  Rubber mats (loose laid or glued): This is a good material but should be laid or glued to a concrete or popcorn asphalt base.  The mats need a solid base in order to hold in place or remain level over time.  Rubber mats can present an aesthetic issue but functionally work well.

4)  Stone dust or brick dust:  A good material to use but requires maintenance to retain a clean and orderly look.  It’s slip resistant and drains relatively well.  Not good for plowing conditions unless it is re-spread at the end of the winter season.

5)  Popcorn asphalt:  An excellent material because it’s slip resistant and drains well.  Its problem is its aesthetic appearance.  It should be laid over a layer of crushed gravel so the surface water can drain through the asphalt and away.  The advantage of the popcorn asphalt is it has the ability to reseal itself in warm weather if the ground freezes and heaves.  It can also be used as a base layer under rubber mats or rubber bricks.

6)  Concrete (custom colored and/or textured) or concrete pavers:  Not a very horse-friendly material to use.  It can be scored to give it texture, tinted to give it color and in some cases a brick pattern, but it is nevertheless a very unforgiving material.  Horses shoes can slip on it and spook a horse especially when crossing from one material to another.  However, this material is great when installed under the interlocking rubber brick or rubber mats.

7)  Poured in place non slip surface material:  This is a good material (a number of different types and manufacturers available) that can be slip resistant, cushioned to protect from a fall and can be used outdoors.  It is often used on playgrounds.  Blackburn Architects uses it most often in foaling stalls where a seamless continuous surface is desired.

8)  Grass ground cover:  Not recommended due to its maintenance needs especially when under cover.

9)  Grid mats:  Can work if the owner wants to use stone or brick dust or some other type of light screenings but requires periodic maintenance.

10)  Brick or stone:  Not highly recommended as it is less slip resistant though it can look great, especially if brick dust is used elsewhere such as the driveway in a chip and seal application.

Posted in Equestrian News, News and Press | | Leave a comment >
01.17.19

Design Guidance on Adding Living Quarters to Your Horse Barn

Blackburn Architects typically advises clients against including living quarters in a barn. When we add them, we provide extra safety measures.

An apartment or condo in the barn isn’t the same thing as short-term accommodations. We’ll often design a “warm room” into our barns so clients can stay close in case there’s a sick horse or for foaling.  Even though technology provides some good methods to provide warning or protection (alarms, cameras, etc.) there are times when you just need to be close to respond quickly.

Permanent living quarters, however, can be problematic:

1. If the residential component is too large, then the change of scale can overshadow the scale of the barn and you end up with a “tail wagging the dog” situation. Aesthetically the design looks awkward.

2. If the residence will house a family, you run the risk of injury to children, pets, or visitors and there’s an increased risk of fire caused by household activities.

3. If the apartment or condo is for the owner it’s easier to control but if it’s for a groom or an income rental it’s important to be prepared that lifestyle choices may clash with your own.  For example, the tenant may be entertaining guests who may be unaware of the impact of their activities on the horses.

Because a barn usually has a lower cost per square foot (to design and build) than a residence, you may be able to save money by separating the two different uses and avoid building in the necessary fire and smoke separations.  For example, the barn could be a simple pole barn and the residence constructed to a higher standard. 

Another option is to build the apartment or residence as part of a service /storage structure or another farm building.  Two examples of Blackburn Architects’ projects where we did this are Great Roads Farm in New Jersey and Kindle Hill Farm in Pennsylvania.

To conclude, without building in substantial fire/smoke separations when adding an apartment in the barn you increase your risk of disaster.  Building codes in most areas require you to include a two-hour separation.  It’s essential that you check these regulations before planning an apartment in your barn.

Furthermore, an apartment in a barn or connected to it can impact the farm by forcing a larger footprint for the barn, and this can impact service roads, lead paths to paddocks, land grading, etc.  If the apt is added to the second “loft” floor unless it is designed properly it could negatively impact the introduction of natural light and ventilation (see Bernoulli principle and chimney effect).

Posted in Equestrian News, News and Press | | Leave a comment >
01.09.19

Adding Stalls to an Indoor Riding Arena? Good Idea or Not?

Adding Stalls to an Indoor Arena

Over the years, Blackburn has been asked what we think of adding stalls along the side of an indoor arena. Sounds like a good idea, right? Well, we strongly recommend against it. The problems are many.

1. Air Quality. Forced to breathe arena dust many hours of the day, stalled horses live in an environment that isn’t healthy. We recommend instead that the stall portion of the stables be connected in a separate but attached structure running perpendicular to the barn. Not only does this arrangement help isolate the arena dust from the barn, it allows the barn to sit independently. The structure can then catch the prevailing breeze which permits two scientific principles (Bernoulli principle and the chimney effect) to provide natural ventilation and light to the barn.

2. Fire Safety. We always recommend fire separations by providing sliding doors to isolate the barn from the arena in case of fire. These doors may or may not be rated fire separations. The decision is usually driven by cost, and we often provide an automatic rolling fire rated shutter to isolate the two separate areas – this at least reduces the risk of smoke moving between structures. (Quite often it’s the smoke that is more dangerous and faster moving than the actual fire.) The isolation by sliding doors also provides critical time to get horses out of barn. If the arena and barn share the same space, there is less opportunity to isolate fire or smoke from the stable area. Furthermore, when the stables are parallel and part of the arena, the structure is generally shared – raising the risk it could collapse and trap horses inside.

3. Cost, Scale and Building Height. When stalls are designed as part of an indoor arena, the design requires a wider structure (often steel due to the long spans) which is typically more expensive. When it’s a separate but attached structure, it can be framed in wood with smaller spans reducing the cost of the framing. If the stalls are part of the indoor arena, then the building becomes wider which also means a corresponding height increase. In many areas, the local zoning codes restrict building heights. We have found typical restrictions of 35 feet. It’s difficult to get any height in the barn or arena if you are trying to build a 100 x 200 ft arena with a row of stalls and aisle way. Also, from an aesthetic perspective, wider and taller building begin to get enormous and have the potential to look like an airplane hangar and overshadow the entire farm.

4. Storm Water Issues. Finally, if your property is not flat, such a structure with a large footprint may require significant grading that can be expensive and create storm water issues. By breaking the barn and arena into two connected structures you can more easily work it into the natural slope of the land. Also, the isolation of the barn and arena permits opportunities to push the arena into the ground – helping to reduce the scale and height of the arena above finish grade. The entry to an observation area can be elevated above the arena floor (but entry level still at grade) for more easily viewing over the kick wall from a sitting position.

Blackburn has designed many arenas with this perpendicular arrangement. Rocana Farm, designed by us in 2002, is a great example of what we mean. Stalls at this hunter/jumper facility are attached to the enclosed arena with an elevated observation room, tack room, wash and grooming stalls.

Posted in Equestrian News, News and Press | | Leave a comment >
12.04.18

Thoughts on Horse Barn Heaters

Orr-Heating BlogA client recently asked one of our architects for recommendations on adding heaters in the barn.

When an owner requests forced air electric heating system in the stalls, we advise against it for several reasons:

1) Forced hot air rises and heat stays at the ceiling level, adding unnecessarily to the cost of operating the barn. Blackburn barns are designed to allow air to escape thru the roof vents, so at a minimum sending heat skywards doesn’t make financial sense.

2) Forced air systems move airborne particles around the space and, given the size of the barn and the heat loss expected thru the roof vents, heaters must pump a lot of air at a high velocity to provide sufficient heat to keep the barn to a temperature that might be considered sufficient (which varies with personal preference).

3) Forced air heaters are unhealthy for horses because they spread dust, mold and disease throughout the stable area. Horses give off a tremendous amount of moisture, especially in winter, and that moisture contains bacteria and other viral matter that can be harmful to their sensitive respiratory systems and spread to other horses. If a barn is closed up too tightly (the barn needs to breathe in all temperatures) the barn can become too warm and increase the opportunity to breed bacteria that would normally be ventilated out of the barn. There may be some exceptions for older and ailing horses but a tightly-closed, heated barn is often more harmful than helpful. We recommend discussing with your vet exceptional conditions that may be needed for young, aging or infirm horses.

Strategically placed infrared heaters can be a good choice to keep the chill at bay in human-occupied areas.

Infrared is another term for radiant heat. For example, a stove, fireplace, oven or even our own sun emit infrared (radiant) heat energy. That energy converts to heat, warming the surrounding air.

In a barn, infrared heaters are specially made to produce safe, comfortable radiant heat. When asked by a client, we specify that heaters are directed downward from the ceiling toward a target area below. In an equestrian facility, infrared heaters can be directed toward wash stalls and/or and grooming areas, or down a common walkway, between horse stalls or even in riding arenas.

Blackburn Architects uses two scientific principles to ventilate horse barns – the Bernoulli Principle and the Chimney Effect – vertically removing harmful bacteria and ammonia gases that can cause disease and odors. Providing heat for the horse by forced air does little if anything to help the horse except create harmful, unhealthy conditions.

When requested by a client, we can specify heated floors. Infrared tube heaters emit soft, comfortable radiant heat energy without creating drafts. Infrared heats the ground. Warm floors = warm bodies & feet.

As we all know, horses can naturally withstand colder temperatures better than hot temperatures. If permitted to keep their winter coat and remain dry, horses can withstand even very low temperatures. For colder temperatures, we recommend keeping cold drafts off the horses by closing Dutch doors at stalls (add weather stripping to the doors if needed) and closed aisle doors. In other words, if a horse can stay dry and get out of a steady breeze or draft they have a much better chance to maintain their own health.

Posted in News and Press | | Leave a comment >
10.19.18

Fencing When Designing a Horse Farm: Options to Consider

Sagamore_insta

Fences are one of the most common discussion points among the Blackburn team and clients when we’re designing an equestrian facility. The options listed below are certainly not exhaustive but reflect what we commonly find in many of our projects.

Some options are better suited for pastures, while others are more appropriate for small stall turnouts. We’ve tried to identify a variety of approaches that meet the safety needs for horses, limit maintenance needs, and often fall within neighborhood guidelines. 

1. Steel rail fencing is an option for stable turnouts. The material is available in a thinner profile so it isn’t as visually heavy and it can be painted black or another dark color so that it does not have the “ranch” appearance seen with galvanized steel pipe corrals. The up-front cost is higher but the material is durable and will have little-to-no maintenance needs.

2. Woodguard polymer coated wood fencing is treated wood with a non-toxic, non-chipping surface covering. The wood grain is still visible but the finish has some of the plastic texture of the polymer. This product allows for fencing to be constructed similar to a wood fence, with the rails attached to the face of the posts. The result is a stronger, safer fence. Woodguard has a 20-year warranty. The cost is similar to wood board fencing but the maintenance needs are less. While the manufacturers state that this product is resistant to cribbing, we would recommend that a hot-wire be provided at the top rail to discourage the horses from chewing. This material would be acceptable to use for both stall turnouts and paddocks. It offers the appearance of a traditional 3- or 4-board wood fence without the significant maintenance demands. https://www.wood-guard.com/horse-fencing/

3. High Tensile Polymer (HTP) comes in both rail and wire styles and is typically mounted on wood posts. The rail is typically 5” wide and from a distance will appear similar to wood board fencing. Because wire fencing has a lower visibility, we suggest using a thicker top board so that the horses can more easily identify the barrier. The HTP materials’ inherent flexibility makes these products durable and resistant to horses leaning on or running into the fence. Typically, these are more suited to large pastures or for perimeter fencing and less so for stall turnouts. The darker colors tend to exhibit a chalky appearance over time.

4. Rubber fencing is a durable, flexible, and low profile fencing material and is similar to the HTP fencing. We’ve not seen this product used as often and we understand that there’s a risk that the strings of the fabric (which is an internal support for the rubber) can become exposed and offer a hazard for horses to chew on. A hot-wire at the top of the fence may combat this risk.

The advantages of rubber, HTP or any type strap fencing is the posts can be set further apart which is useful when its highly visible and you want to minimize the number of posts. The fencing is flexible and resists breaking when a limb or tree falls on it therefore it’s a good material for perimeter fencing large acreage and where it encounters wooded areas. This is safer if/when a horse runs into the fence; especially a problem on larger paddocks when horses can get some speed and not be able to slow down.

5. HDPE is a post and board fencing material. It’s stronger than PVC and performs better in all weather conditions, but the primary issue is in the assembly of the fence. The rails are set between posts, instead of fastened to the face, and can pop out if the fence is not secured properly. Its requires more frequent posts which tends to look busy and it’s difficult to bend or angle corners because of the assembly method. The Blackburn team isn’t particularly fond of this material because it can look clunky and isn’t the safest option. http://www.amberwayequine.com/products/hdpe-fencing-2/

Posted in Equestrian News | | Leave a comment >
10.17.18

Recommendations for Adding Glass in a Horse Barn

WinterFarm_Insta

What’s the safest way to incorporate glass in a horse barn? If you’ve been following our work, you already know that Blackburn Architects’ mission is to promote as much natural light and ventilation in horse structures as possible. Naturally, this means we add a lot of windows to our designs. In its safety recommendations for the stable, Rutgers NJ Agricultural Experiment Station cautions that “windows need to be inaccessible to horses and livestock, covered with bars or screening and made of safety glass.” (https://esc.rutgers.edu/fact_sheet/safety-recommendations-for-the-stable-barn-yard-and-horselivestock-structures/). So how do our architects protect the horses and still use a lot of glass in our designs?

1. Use Tempered & Laminated Glass
We recommend that all glass in a horse stable be tempered, including glass that’s laminated. Tempering and lamination do two separate but similar things to increase the safety of glass if/when it breaks: Tempering makes the glass break into small chunks as opposed to slivers and shards, while the lamination gives the glass a slightly greater resistance to breaking and keeps the glass in place when and if it breaks.

Laminated glass consists of a clear plastic laminate sandwiched by glass on both sides. Since horses have access to both sides of a glazing unit, ideally both sides should be laminated and tempered. If this approach is too costly for your budget, stick with everything being tempered and omit the lamination. Laminated glass does not always age as well as tempering. The laminate can shrink and pull in from the corners of the glass, and eventually become visible over time. We prefer tempering.

2. Minimum Thickness of Glass and Airspace
To arrive at the minimum thickness of glass, work backwards from the depth of the frame, minus about 1/4”. Each glass manufacturer determines what spacer sizes they offer. Understand that the more airspace you can allow the better, but each manufacturer works with a few different pre-set size spacers. Use the largest one that still allows the glazing unit to fit within the frame.

3. Special Considerations for Cold Climates
In cold climates, we specify glass with a high solar gain and low emissivity. In technical terms, the glass meets the following guidelines:
1. A Solar Heat Gain Coefficient (SHGC) around 0.55
2. A U-value of less than 0.33
3. A higher value Visible Transmission (VT)
4. Use double-paned glazing units with low-e gas that has a vacuum sealed gasket between the panes of glass. The pocket between panes of glass is filled with an insulation gas, most typically argon.
5. Consider using low emissive (low-e) glass panes (low-e prevents the transfer of heat from warm to cold). The low-e coating (typically a metallic oxide) should be on outside of the innermost pane of glass.

There are pros and cons that should be considered with each option 1-5 above. For instance, with #4, over time and if the gasket seal fails, you can begin to see condensation between the panes of glass. Whereas with #5, you may be able to see the coating from certain angles, especially if you are wearing polarized sunglasses. Since the advantages are a bit more obvious, and similar to one another (i.e. tempered vs laminated, and low-e gas vs low-e coated glass), here is a summary of some of the disadvantages to each option:

Tempered only – glass may still shatter (in harmless pieces) and fall to the ground.
Laminated only – laminate can discolor over time and shrink in from the corners of the glass.

Low-e gas filled glazing unit – if the gasket fails, condensation can form in between the glass.
Low-e coated glass – may be visible in certain light conditions, or when wearing polarized sunglasses. You can sometimes see this on automobile glass.

To summarize, a good starting place for adding glass to your barn begins with tempered glass, meeting the SHGC and U-values recommended above. A step beyond this is low-e coated glass, since with #4 (low-e gas) you can expect the gaskets to fail at some point, and the glazing unit will need to be replaced. If the coating of the low-e coated glass is too “visible,” then low-e gas may be the better option, with the expectation that you may need to replace some of them again in 10 to 20 years, if and when the gaskets fail.

Posted in Equestrian News, News and Press | | Leave a comment >